
Programming for Malleability with Hybrid MPI-2
and OpenMP – Experiences with a Simulation

Program for Global Water Prognosis
Claudia Leopold, Michael S̈uß, Jens Breitbart

University of Kassel, Research Group Programming Languages / Methodologies
Wilhelmsḧoher Allee 73, 34121 Kassel, Germany

fleopold,msuessg@uni-kassel.de, brietbar@student.uni-kassel.de

Keywords—Parallelization of Simulation, Libraries and Program-
ming Environments, Message Passing

Abstract— This paper reports on our experiences in parallelizing
WaterGAP, an originally sequential C++ program for global assess-
ment and prognosis of water availability. The parallel program runs
on a heterogeneous SMP cluster and combines different parallel pro-
gramming paradigms: First, at its outer level, it uses master/slave
communication implemented with MPI. Second, within the slave pro-
cesses, multiple threads are spawned by OpenMP directives to exploit
data parallelism. Time measurements show that the hybrid scheme
pays off. It adapts to the heterogeneity of the cluster by using multiple
threads only for the largest tasks and mapping these to multiprocessor
nodes. Third, the program is malleable, which has been accomplished
with the dynamic process management facilities of MPI-2, based on
the MPICH2 implementation. In particular, it is possible to increase
the number of processes while the program is running. Malleability
is an important feature in both batch systems and grid environments.
We discuss the support that MPI-2 provides for malleability.

I. I NTRODUCTION

Parallel programming today is dominated by the Message
Passing Interface MPI [3], [9], OpenMP [10], and lower-
level threading libraries [7], [14]. While MPI is most appro-
priate for distributed-memory architectures, OpenMP has
been designed for shared-memory machines. A common ar-
chitecture nowadays are SMP clusters, i.e., clusters of mul-
tiprocessor nodes, which combine shared memory in each
node with distributed memory in between the nodes. Ac-
cordingly, hybrid forms of programming, using MPI at the
outer level of the program and OpenMP for decomposing
individual processes into threads have been proposed [11],
[12].

Other properties of current architectures, especially het-
erogeneity and dynamic behavior, have received far less
consideration as of yet in the parallel programming com-
munity. We speak of heterogeneity if an architecture is
composed of different computing resources, for instance if
the nodes of an SMP cluster differ in their number of pro-
cessors. We speak of dynamic behavior if the number of
processors available to an application varies during the pro-
gram’s execution. The termmalleability has been coined
to denote the ability of programs to adapt to changes in the
number of processors [15]. Malleability is helpful in batch
systems, where it gives the scheduler more freedom in as-
signing jobs, but it is particularly important in grids.

This paper evaluates the opportunities that MPI and
OpenMP provide for making use of modern architectures,
based on an example program from the simulation domain.
The program is called WaterGAP, which stands for ”Water

– Global Assessment and Prognosis”. It has been devel-
oped at the Center for Environmental Systems Research of
the University of Kassel, and is explained in Section II of
this paper. Briefly stated, WaterGAP partitions the surface
area of continents into equal-sized grid cells. Based on in-
put data for climate, vegetation etc., it simulates the flow of
water, both vertically (precipitation, transpiration) and hor-
izontally (routing through river networks). Presently, the
input data are being refined, and to cope with the resulting
increase in computational expense, the program was paral-
lelized.

From a computational point of view, the vertical simula-
tion in WaterGAP gives rise to data parallelism, as grid cells
are computed independently. The horizontal simulation re-
quires communication, but one can observe that the world
is partitioned into independent basins. Independent means
in this context that there is no flow of water between basins,
a property that is inherent in the hydrological model behind
WaterGAP. Thus, different basins can be computed by dif-
ferent processes, without any need for communication. The
basins differ in size, from a few very large basins to many
small ones. The size of the basins is determined by natural
conditions, and thus cannot be changed.

As target architecture for our parallelization efforts, we
consider the compute cluster of the University of Kassel.
This Linux cluster consists of 58 double-processor nodes,
and one 8-processor node that comprises 4 dual-core chips.
Jobs are submitted through the Torque batch system, which
is an OpenPBS derivative. The cluster is usually operating
at full capacity, with the majority of jobs being sequential
and long-running. Before a WaterGAP run can be started,
it may take for several hours until the requested number of
nodes has become free. During this time, the batch system
assigns processors to WaterGAP as they become available,
but it will not start the program until all the requested nodes
are available. Thus, the other processors are idle for several
hours, which is a waste of resources. On the cluster, both
MPI-2, with the MPICH2 implementation, and OpenMP,
with the Portland compiler, are available. The paralleliza-
tion has been accomplished in three steps:

1. Master/slave structure: This standard pattern has been
implemented with MPI. It is used to distribute the basins
to be computed among processes. The resulting program
scales almost linearly up to about 8 slaves. Beyond that, the
computation of the largest basin prevents any further speed-
ups.



2. Hybrid parallelism: Keeping the master/slave structure
unchanged, we used OpenMP to split individual slaves into
multiple threads. These threads exploit the data parallelism
among grid cells within a basin, during the vertical and part
of the horizontal simulation. The speedup from threading
is sublinear, but the hybrid scheme can be used to over-
come the bottleneck at the largest basin. In our hetero-
geneous cluster, the scheme is particularly efficient if the
largest basin is mapped to the 8-processor node, and all but
the two largest basins are computed by a single thread only.
3. Malleability: To avoid idling of processors before the
start of WaterGAP through the batch system, we rewrote
the application so that it can be started with a small number
of slaves, and later incorporates more and more slaves as the
processors become available. We implemented this feature
using the dynamic process management facilities of MPI-2.

While master/slave parallelism and hybrid parallelism are
already quite well understood, we do not know of any previ-
ous work on the implementation of malleability with MPI-2.
This paper describes our experiences, and discusses design
decisions in our program.

The paper is organized as follows. First, Sect. II describes
the WaterGAP application. Then, the main part consists of
sections III–V, which are devoted to the three steps of paral-
lelization as outlined above. Sect. VI reviews related work,
while finally, Sect. VII summarizes the paper and mentions
directions for future research.

II. WATERGAP

The WaterGAP program [1], [6], [16] has been devel-
oped at the University of Kassel, with the goal to investi-
gate current and future water availability worldwide. Sev-
eral projects have already been carried out with this pro-
gram, including studies on the impacts of global changes in
climate as well as water withdrawals from households, fac-
tories, irrigated farms, and so on.

The WaterGAP program operates on several hundred in-
put files, and generates about 15 output files per year of
the simulation period. A typical simulation period is 30
years. Among others, input data refer to climate, vegeta-
tion, and water use. Most input data are available for each
grid cell; part of the data per day, others per month or per
year. Among the input data is a flow direction map that
assigns a single neighbouring cell to each grid cell, where
the surplus water from this cell flows into. Output data in-
clude results on various specific measures such as ground-
water runoff and snow cover, and are collected per grid cell.
Most outputs are generated annually, some monthly.

The WaterGAP program has been written in C++ and
comprises about 15.000 lines of code. The program can be
run in different modes (e.g. calibration mode), of which
this paper only considers global computation mode, i.e., the
simulation is carried out for each grid cell worldwide.

After an initialization phase, the main loop of WaterGAP
iterates through the days of the simulation period. For each
day, it carries out a vertical simulation first, and several steps
of horizontal simulation thereafter. During the vertical sim-
ulation, transpiration and water balance are computed for
each grid cell, based on data for precipitation, temperature,
etc. The horizontal simulation calculates the flow of water

through the networks of rivers, lakes etc. Whereas the ver-
tical simulation runs once per day, the horizontal simulation
is carried out several times per day, with the exact number
of time steps depending on river velocity.

During each vertical simulation step, the computation of
different grid cells is independent. During horizontal sim-
ulation, water is exchanged between grid cells, but this ex-
change is restricted to occur between cells of the same basin.
For hydrological reasons, the world is divided into a total of
about 10.000 basins. A few of these are very large, such
as the Amazon area, but the majority of basins comprises
only a few grid cells. The basins are stable, i.e., the set of
basins does not depend on any inputs other than the flow di-
rection map, and even the relative computational expense of
the basins is only lightly dependent on input.

Currently, the input data of WaterGAP are being refined
to increase the spatial resolution from 0.5� to 5 minutes side
lengths of grid cells. With the 0.5� version, WaterGAP had a
running time of about 10 hours on a standard PC, for a sim-
ulation period of 30 years. With the new resolution, the run-
ning time increases by a factor of about 36, which can only
be handled on a parallel machine in a reasonable amount of
time.

III. M ASTER/SLAVE PARALLELISM AND I/O

The first step of our parallelization uses the fact that
basins are computationally independent. It takes the sim-
ulation of each basin, over the whole simulation period, as a
task. Since task sizes differ, we use the master/slave scheme
for mapping tasks to processes. This well-known scheme
deploys one master process and several slaves. The master
starts by sending a task to each slave. Whenever a slave has
finished its work, it reports the result to the master and gets
the next task, until all tasks have been processed.

In a preprocessing step, we group grid cells into basins,
referring to the information in the flow direction map. The
result contains many small basins, for which the overhead
of master/slave communication and I/O would outweigh any
gains in performance. Therefore, we group the small basins
into larger working units to be distributed to the slaves, and
store the result in a file. For ease of presentation, we denote
the working units as basins, as well. The preprocessing does
not need to be repeated in each program run, but only when
the flow direction map changes instead.

Table I depicts the distribution of sizes among basins. The
numbers have been obtained by grouping natural basins of
size up to 100 grid cells together in a working unit. Thresh-
old 100 has been selected experimentally to maximizes the
overall speedup, and is used throughout this paper. As can
be seen in the table, there are a few very large basins, with
the largest basin taking more than twice the compute time
of the second largest. The master assigns the basins in de-
creasing order of size, i.e., the largest basin is assigned first.

Another aspect of master/slave parallelization is I/O. Both
the input files and the output files follow a standard format
that allows their contents to be visualized with a tool. The
format requires a particular arrangement of grid cells, which
is not compatible with the assignment to basins. Thus, in
each file, the grid cells of any single basin are scattered
throughout the file. Therefore each slave must read and



Number of basins Size (in grid cells) Time (in sec.)
1 3165 275
1 1946 120
5 1000 – 1700 50 – 90

400 100 – 1000 2 – 40

TABLE I : Size distribution of basins (units). Running time has been

measured for a simulation period of two years on a single processor.

write discontinuous data that do not follow a regular pattern.
MPI-2 supports the efficient access of multiple processes

to the same file. The focus, however, is on regular pat-
terns that can be described by a MPI datatype. Although
an explicit positioning of file pointers is possible, the use of
MPI-2 I/O slowed down our program considerably. There-
fore, we implemented a conservative approach using lan-
guage I/O (fread , fwrite etc.). Input files are read by
all processes, while output data are collected and written by
the master.

The master/slave scheme scales almost linearly up to
about 8 slaves (see Sect. IV). With more slaves, the
largest basin becomes a bottleneck and prevents any further
speedup.

IV. H YBRID PARALLELISM AND HETEROGENEITY

To scale the number of slaves beyond 8, we have to
internally parallelize the computation of basins. As al-
ready stated, the program has potential for data parallelism,
since grid cells are independent during vertical simulation.
While this potential can, in principle, be exploited with MPI,
the distributed-memory programming model of MPI would
force us to partition data structures among processes, and
to realize all communication between grid cells through ex-
plicit message passing.

Therefore, we chose OpenMP for intra-basin paralleliza-
tion. OpenMP has a shared-memory model, and so there
was no need to change the existing data structures. Since
the two parallel programming systems are used for orthogo-
nal aspects of parallelism (inter-basin vs. intra-basin), their
combination only slightly increases the complexity of the
program. In fact, OpenMP parallelization was easy. We
identified and parallelized some central loops: the main loop
of vertical simulation, and several loops over grid cells dur-
ing horizontal simulation.

Figure 1 shows timing results of the hybrid MPI /
OpenMP program with different numbers of slaves and
threads. In addition to the slaves, one single-threaded mas-
ter process was used. Running times are in seconds, and re-
fer to a simulation period of two years. The programs have
been compiled withmpich1.2.7 , using the Portland com-
piler with optimization level-fast -Mconcur . Mea-
surements were carried out on three architectures: the com-
pute cluster of the University of Kassel (double-processor
AMD Opteron 248 nodes), the compute cluster of the Uni-
versity of Frankfurt (double-processor AMD Opteron 244
nodes), and a more powerful node of the Kassel cluster (4
AMD Opteron 875 dual-core processors). Jobs have been
submitted through the batch system so that each process and
thread had exclusive access to a processor (except for the

Fig. 1. Running time of hybrid program

largest run on the 8-processor node).
The program scales almost linearly up to 8 or 9 slaves,

both in the pure MPI version, and in the hybrid version
with two threads. Beyond that, the running time remains
constant, and the computation of the largest basin forms a
bottleneck (not shown in the figure, but was observed in
the experiments). The numbers show that OpenMP alone
contributes to a significant, although sublinear, performance
gain, and that this gain is orthogonal to the gain from MPI
parallelization.

Since inter-basin parallelism yields higher speedups than
intra-basin parallelism, the hybrid scheme pays off most if
it is coupled with heterogeneity, i.e., if different processes
use a different number of threads. Heterogeneity must be
supported by the batch system. The Torque system accepts
requests such as: 4 nodes with 2 processors plus 1 node
with 8 processors plus 1 processor from any node. To start
a heterogeneous run, some programming is required in the
batch script, to control the assignment of MPI processes to
nodes. The WaterGAP program profits from heterogeneity
in three ways:

� First, in our realization of the master/slave scheme, the
master does not participate in the computation (we chose
this variant for simplicity). Instead, it concentrates on com-
munication with slaves and I/O, which is not compute-
intensive. Therefore, it is sufficient to use a single thread for
the master. The numbers in Fig. 1 have been generated this
way. Additional experiments with a double-threaded master
led to almost identical results, despite the higher consump-
tion of resources.
� Second, the largest basin is mapped to the most powerful,
in our case the 8-processor, node. As the batch script con-
trols the assignment of MPI processes to nodes, the master
program was easily adapted to distribute work accordingly.
� Third, only the largest basins profit from the use of mul-



tiple threads to overcome bottlenecks, whereas the smaller
basins gain more if the two processors of a node are used for
two processes (since inter-basin parallelism yields higher
speedups than intra-basin parallelism).

Using heterogeneity, we reduced the running time of Wa-
terGAP down to a minimum of 99 seconds on the Kassel
cluster, which corresponds to a speedup of 22 as compared
to a sequential run on the fastest node. This speedup is ob-
tained with a total of 32 processors: 6 processors of the pow-
erful node for the largest basin, 2 processors of the powerful
node for the second largest basin, 2 processors of another
node for the third largest basins, and 22 single-threaded
processes for all other basins and the master. In this run,
the bottleneck was observed at the largest basin. Using 8
threads for this basin, though, the second largest basin be-
came a bottleneck. Further speedups are therefore depen-
dent on the availability of a second multiprocessor node with
more than two processors.

V. M ALLEABILITY WITH MPI-2

As stated before, another problem on our target cluster is
idling of processors, because the batch system has to wait
for the availability of all requested processors before appli-
cation startup. We solved this problem by making the pro-
gram malleable, i.e., the program starts with a small num-
ber of processes, and later incorporates more and more pro-
cesses when the processors become available. The mas-
ter/slave pattern is well-suited to malleability, as the mas-
ter can easily distribute the tasks to an increasing number of
slaves. When a slave dies, the master could also reassign its
task, but this aspect is not relevant here. Instead of submit-
ting a single job to the batch system, we submit several jobs,
which request part of the resources each. For instance, we
submit one job per MPI process.

We used MPI-2 for implementation, and therefore start
this section with a brief introduction to the relevant parts of
MPI-2. After that, we describe our implementation and dis-
cuss various design decisions and MPI-2 support. Briefly
stated, we use a client/server scheme that complements the
master/slave scheme already explained. The overall struc-
ture is depicted in Fig. 2, where edges marked 1 denote pro-
cess startup, edges marked 2 represent master/slave commu-
nication for the distribution of basins, and edges marked 3
represent connection establishment by MPI-2 client/server
routines. Note that master and server are different processes.
The server is started in advance, while all other processes
are started through the batch system. The first process takes
the role of the master, and the others are slaves.

A. Dynamic Process Management in MPI-2

Whereas the original MPI-1 standard required the num-
ber of processes to be fixed at program startup, the more
recent MPI-2 standard supports dynamic process manage-
ment with two sets of functions:

First, MPI_Comm_spawnand related functions allow
an MPI process to dynamically spawn new MPI processes.
However, there is no obvious way to inform the existing
MPI process about the fact that new processors have become
available, and therefore we do not use these functions.

Fig. 2. Structure of malleable program

Second, MPI-2 defines a set of functions for client/server
communication, somewhat similar to socket communication
in networks. On the server side, functions include
� MPI_Open_port to establish a network address,
� MPI_Comm_accept to wait for a connection request
from a client, and
� MPI_Publish_name to register port information on a
name server
On the client side, functions include
� MPI_Comm_connect to establish communication with
a server for which port information is known, and
� MPI_Lookup_name to retrieve port information from
the name server.

After successful connection, the matching accept and
connect calls each return an intercommunicator, through
which server and client can send and receive messages in
both directions.

The concept of communicators has already been intro-
duced in MPI-1. Communicators are data structures to
store all information required for communication between a
group of processes. MPI distinguishes intracommunicators
and intercommunicators. Intracommunicators number pro-
cesses consecutively, for easy access. At program startup,
the intracommunicatorMPI_COMM_WORLDis predefined
and comprises all processes started. Many MPI programs
rely solely onMPI_COMM_WORLD.

The communicator returned after connection establish-
ment is an intercommunicator, i.e., a bridge between two
groups of processes. Note that both client and server
may be composed of multiple processes. In this case,
MPI_Comm_accept andMPI_Comm_connect have to
be invoked by all processes of the respective group, and the
calls return only after successful connection establishment
(in MPI terms, the functions are collective and blocking).

Intercommunicators are more difficult to handle than
intracommunicators, but MPI provides a function called
MPI_Intercomm_merge to transform an intercommuni-
cator into an intracommunicator. This function is collective
and blocking over both groups. Communicators can be re-
leased using the functionMPI_Comm_disconnect .

B. Master and Server Processes

We now return to the malleable WaterGAP version. From
the running application’s point of view, new processes be-
come available at any point in time, and should enter com-
putation as soon as possible. The master can not call
MPI_Comm_accept itself, as the function is blocking and



would therefore prevent it from doing other work. Thus, the
function must be called in a separate thread of control, the
server (see Fig. 2). There are two opportunities for imple-
mentation:
� master and server are different threads of the same pro-
cess, or
� master and server are separate processes.
In both cases, the master must be informed when a new slave
becomes available, i.e., communication is required from
server to master. This communication is rather difficult to
accomplish in OpenMP, as it requires repeated inquiries and
synchronization on the master’s side. In MPI, communica-
tion is more natural: According to the master/slave scheme,
the master runs a loop and receives a message from any slave
in each loop iteration. The scheme can be easily extended to
let the master receive a message from either a slave or from
the server. With MPI communication between master and
server, the only gain from running both in the same process
would be the immediate availability of the intercommunica-
tor returned byMPI_Comm_accept to the master. This
gain is outweighed, however, by the opportunity to start the
server in advance, which the second scheme provides (we
will explain later why this is useful). Therefore, master and
server are run in different processes.

We use a separate executable for the server, but the same
executable for master and slaves. Thus, a job can dynami-
cally decide to take over the role of master or slave. When
an MPI process is started, it first connects to the server, who
sends back the current value of a process counter. If this
value is zero, the new process branches into the master code,
otherwise into the slave code. In either case, the value is
stored as a unique process number.

C. Communicators

In the non-malleable WaterGAP version, all communi-
cation has been accomplished through one intracommuni-
cator: MPI_COMM_WORLD. In particular, the master used
MPI_Iprobe(...MPI_ANY_SOURCE...) in its main
loop, to wait for a message from any slave. MPI does not
support a similar wait for a message from any communica-
tor. To avoid major changes in the existing code, it would
therefore be desirable to have a communicator for the group
of all processes, as a replacement forMPI_COMM_WORLD.
Although MPI provides constructor functions for communi-
cators, these must be invoked in a collective and blocking
call, i.e., all processes must carry out the functions at the
same time, and the already existing slaves would have to
interrupt their work for that. As a possible solution, the con-
structor may be invoked by a separate thread of each slave.
In the hybrid MPI / OpenMP program, however, this thread
is unrelated to the existing OpenMP threads, which would
lead to an involved program structure with, e.g., nested par-
allelism.

Therefore, we have decided against a global communi-
cator, despite the drawback that we had to go through the
whole program and adapt all MPI functions to the new com-
municator structure. This structure uses as many communi-
cators as slaves, each of them comprising the master and one
slave; plus another communicator for master and server. All
communicators are intracommunicators. We now describe

how they are constructed.
As stated before, any new process first connects to the

server and is assigned a process number. If the new process
is the master, the returned intercommunicator is transformed
into an intracommunicator and the former released.

If the new process is a slave, the server informs the
master about its existence, by sending a message. In the
main loop of the master, we have replaced the original
MPI_Iprobe(...MPI_ANY_SOURCE...) by a loop
that cycles through all communicators, thereby checking if a
message from either the server or a slave is available. When
the master receives a message from the server, it invokes ac-
cept to establish a separate connection with the slave and
build a communicator that connects master and slave only.

D. MPICH2 in the Batch System

In addition to incorporating MPI-2 functions into the pro-
gram, we had to deal with process startup through the batch
system. The MPI-2 standard leaves process startup to the
implementation.

The MPICH2 implementation [4] of MPI-2 includes a
process management environment. Before an application is
started withmpiexec , an MPI daemon, called mpd, must
be invoked on each participating machine. Moreover, the
set of daemons must form a ring. Daemons are started with
the user commandsmpdboot andmpd, wherempdboot
starts a ring of daemons on a set of machines, andmpdstarts
a single daemon. As a parameter tompd, one can specify
the hostname / port of an existing mpd ring, which will con-
nect the new daemon to this ring. Port information can be
obtained by invoking the user commandmpdtrace -l ,
on a machine that is already included in the ring.

As a first approach, we considered starting a cluster-wide
mpd ring in advance, to avoid the need to start a new dae-
mon whenever the batch system assigns a job. With this
approach, many daemons are running idle, though (espe-
cially on a large cluster), and therefore, we decided to start
an mpd only after a node has been assigned to WaterGAP
by the batch system.

Daemons are started withmpd, and require hostname /
port information to connect to the existing ring. This infor-
mation must be provided in the job script, but it is not avail-
able before an initial mpd ring has been set up. For ease
of implementation, we therefore decided to start the server
(including mpd) in advance, using a cluster node with per-
mission for interactive access.

The malleable MPI program is not bound to a particular
size of the jobs, i.e., in the sequence of jobs that form a
WaterGAP run, any job script may request any number of
nodes. If a script requests several nodes, mpd’s are started
one at a time, and afterwards all processes are started with a
single call tompiexec .

E. Evaluation of MPI-2

In summary, our experiments have shown that it is pos-
sible to build malleable applications with MPI-2 and the
MPICH2 implementation, and to run these applications
through a batch system. Performance is difficult to mea-
sure as it depends on the cluster load. While our context
only requires to increase the number of processors, we ob-



served in experiments that the program can to some extent
also cope with the event of slaves being killed during pro-
gram execution. In this case, the master proceeds with its
main loop, communicating with existing and new processes
despite the fact thatMPI_Iprobe looks for messages from
a dead slave.

To achieve malleability, we had to apply major changes
to the original MPI communication structure. Instead
of using the single communicatorMPI_COMM_WORLD,
we had to introduce a set of communicators (one per
process), and therefore could not use the convenient
MPI_Recv(... MPI_ANY_SOURCE ...) calls any-
more. The alternative of constructing one communicator for
all processes proved difficult, as communicator constructor
functions are collective and blocking. Use of an additional
thread would have complicated the hybrid MPI / OpenMP
structure. In summary, we missed non-blocking communi-
cator constructor and destructor functions, as well as a non-
blocking variant ofMPI_Comm_accept .

Another drawback of using a set of communicators in-
stead ofMPI_COMM_WORLDis lacking support for collec-
tive communication. In the WaterGAP program, we had to
replace an initial broadcast of a parameter from the master
to the slaves by pairwise communications.

Altogether, malleable programming requires a higher
programming expense. Among the reasons for that (besides
the already mentioned ones) is the need to manage the ring
of mpd’s. Moreover, debugging for errors in the commu-
nicator constructor and destructor calls (e.g. for a missing
MPI_Comm_disconnect ) is time-consuming.

VI. RELATED WORK

Hybrid MPI / OpenMP programming has already been
studied for several applications. Smith and Bull [12] iden-
tify situations in which hybrid programming is superior to
a pure MPI approach, among them load balancing prob-
lems with MPI, and ease of implementation for a paral-
lelization in multiple dimensions. Rabenseifner [11] clas-
sifies hybrid programs, WaterGAP belongs into thehybrid
masteronlycategory. Spiegel and an Mey [13] dynamically
vary the number of threads in different processes to improve
load balancing on a shared-memory architecture. Numeri-
cal programs have been adapted to a heterogeneous cluster
by Aliaga et al. [2]

The need for malleability in the context of grid comput-
ing was pointed out by, e.g., Mayes et al. [8], who designed
a performance control system for applications that consist
of malleable components. They implemented malleabil-
ity by interrupting an MPI program, saving its state, and
later restarting the program with a different number of pro-
cesses. Hungershöfer [5] has shown that the availability of
malleable jobs improves the performance of supercomputer
schedulers. He referred to multithreaded programs.

VII. C ONCLUSIONS

In this paper, we have described our experiences in paral-
lelizing a simulation program for global water prognosis.
The parallelization has been accomplished in three steps.
First, in the base version of the program, we implemented
a simple master/slave scheme in MPI. This program did not

scale beyond 8 slaves, because of a bottleneck at the largest
task. Therefore, in the second step, we mixed MPI and
OpenMP to exploit two levels of parallelism. The hybrid
scheme was most efficient when used with a varying num-
ber of threads depending on task size, yielding a maximum
speedup of 22 with 32 processors. In the third step, we made
the program malleable, as to better use the batch system and
avoid wasting hardware resources.

The paper discussed our deployment of MPI-2 dynamic
process management functions for malleability, and pointed
out difficulties such as lack of non-blocking communica-
tor constructor functions. The performance gain from mal-
leability is difficult to quantify, as it depends on the cluster
load. The investigation is therefore left for future research.
In this context, it would also be interesting to dynamically
adapt the master’s task assignment to differences in compu-
tational power of the available and requested processors.

The WaterGAP program can be further improved, in par-
ticular with respect to I/O, and maybe intra-basin paral-
lelism. Another venue for future research is evaluating MPI-
2’s support for malleability with other applications.

ACKNOWLEDGEMENTS

We thank the Center for Environmental Systems Re-
search, especially Kerstin Schulze, Frank Kaspar and Lucas
Menzel, for providing the WaterGAP code and answering
our questions about WaterGAP. We are grateful to our col-
league Bj̈orn Knafla for proofreading the paper. The Uni-
versity Computing Centers in Kassel and Frankfurt provided
the computing facilities used for our experiments.

REFERENCES

[1] J. Alcamo and other. Development and testing of the WaterGAP 2
global model of water use and availability.Hydrological Science,
48(3):317–337, 2003.

[2] J. I. Aliaga et al. Parallelization of the GNU scientific library on
heterogeneous systems. InInt. Symp. on Parallel and Distributed
Computing, HeteroPar Workshop, pages 338–345, 2004.

[3] W. Gropp et al.MPI : The Complete Reference. MIT Press, 1998.
[4] W. Gropp et al. MPICH2 User’s Guide, Version 1.0.3, November

2005. Available at http://www-unix.mcs.anl.gov/mpi/mpich2.
[5] J. Hungersḧofer. On the combined scheduling of malleable and rigid

jobs. In IEEE Symp. on Computer Architecture and High Perfor-
mance Computing, pages 206–213, 2004.

[6] F. Kaspar.Entwicklung und Unsicherheitsanalyse eines globalen hy-
drologischen Modells. PhD thesis, Universität Kassel, 2003.

[7] C. Leopold.Parallel And Distributed Computing: A Survey of Mod-
els, Paradigms, and Approaches. John Wiley & Sons, 2001.

[8] K. R. Mayes et al. Towards performance control on the grid.Philo-
sophical Transactions of the Royal Society, 363(1833):1793–1805,
2005.

[9] MPI-2: Extensions to the message-passing interface, 1997. Available
at http://www-unix.mcs.anl.gov/mpi.

[10] OpenMP Application Programming Interface Version 2.5, 2005.
Available at http://www.openmp.org.

[11] R. Rabenseifner. Hybrid parallel programming on HPC platforms. In
European Workshop on OpenMP, pages 185–194, 2003.

[12] L. Smith and M. Bull. Development of mixed mode MPI / OpenMP
applications.Scientific Programming, 9(2–3):83–98, 2001.

[13] A. Spiegel and D. an Mey. Hybrid parallelization with dynamic
thread balancing on a ccNUMA system. InEuropean Workshop on
OpenMP, pages 77–82, 2004.

[14] M. Süß and C. Leopold.Observations on the Publicity and Usage of
Parallel Programming Systems and Languages: A Survey Approach,
2006. In preparation.

[15] G. Utrera, J. Corbalán, and J. Labarta. Implementing malleability
on MPI jobs. InProc. Parallel Architectures and Compilation Tech-
niques, pages 215–224, 2004.

[16] WaterGAP Home Page. http://www.usf.uni-kassel.de/usf/forschung/
projekte/watergap.en.htm.


