CuPP - A framework for easy CUDA integration

Jens Breitbart
Research Group Programming Languages / Methodologies
Universitdit Kassel
Kassel, Germany
Jbreitbart@uni-kassel.de

Abstract

This paper reports on CuPP, our newly developed C++
framework designed to ease integration of NVIDIAs GPGPU
system CUDA into existing C++ applications. CuPP pro-
vides interfaces to reoccurring tasks that are easier to
use than the standard CUDA interfaces. In this paper
we concentrate on memory management and related data
structures. CuPP offers both a low level interface — mostly
consisting of smartpointers and memory allocation functions
for GPU memory — and a high level interface offering a C++
STL vector wrapper and the so-called type transformations.
The wrapper can be used by both device and host to
automatically keep data in sync. The type transformations
allow developers to write their own data structures offer-
ing the same functionality as the CuPP vector, in case a
vector does not conform to the need of the application.
Furthermore the type transformations offer a way to have
two different representations for the same data at host and
device, respectively. We demonstrate the benefits of using
CuPP by integrating it into an example application, the
open-source steering library OpenSteer. In particular, for
this application we develop a uniform grid data structure
to solve the k-nearest neighbor problem that deploys the
type transformations. The paper finishes with a brief outline
of another CUDA application, the Einstein@Home client,
which also requires data structure redesign and thus may
benefit from the type transformations and future work on
CuPP.

1. Introduction

In the last years graphics processing units (GPUs) have
evolved into a compelling platform for high performance
computing, as they offer both high computing power and
memory bandwith for a reasonable price. Furthermore highly
programmable GPUs become more and more available in
end-user pc-systems, where they can be used as an additional
processing unit.

In contrast to CPUs, GPUs have been specifically de-
signed for compute-intensive highly-parallel computations
with predictable memory accesses. This fundamental differ-

ence between CPUs and GPUs necessitates new program-
ming systems, one of them being NVIDIAs CUDA.
CUDA offers the programmability of the GPU in the
familiar C programming language in conjunction with a set
of rudimentary libraries for e. g. GPU memory management.
The current CUDA system works fine when the interface
between the CPU part of the application and the GPU
part can be written in plain C, but integrating it into a
C++ application is far less straightforward. Furthermore
transparent integration of CUDA into applications has up
to now not been supported, and developers are required to
explicitly move data from CPU memory to GPU memory
and vice versa. Our novel CuPP framework allows devel-
opers to directly integrate CUDA into C++ applications
and to write data structures that automatically manage data
in both memory domains. Automatic memory management
eliminates the need for developers to take care of reoccurring
tasks, which by itself may not be difficult to solve, but
nonetheless are a source of error. For example, Gillam [1]
shows that there are various subtle details to consider when
writing exception-save memory management code in C++.
Based on the support for data structures, CuPP allows
developers to define two independent representations for the
same data, one of them for use at the CPU and the other at
the GPU. CuPP translates between the two representations
when data is moved from one memory domain to the other.
In this paper we demonstrate the benefit of using CuPP
by integrating CUDA into an example application, Open-
SteerDemo. OpenSteerDemo is the demo application of the
OpenSteer steering library, where steering refers to life-
like navigation of autonomous characters, so-called agents
used for instance in computer games [2]. OpenSteerDemo
offers multiple plugins each simulating different steering
behaviors. We decided to work with the Boids plugin, which
simulates flocks of birds. Working with multiple plugins
would have been almost identical regarding memory man-
agement and CUDA integration, but would have required us
to implement more steering behaviors with CUDA. From a
performance viewpoint, the major component of Boids is the
so-called k-nearest-neighbor problem (k-nn), in which for
each simulated entity (agent) the k nearest neighbors are to
be found. Based on their positions, each agent decides where
to move next such that, e.g. collisions are prevented. The

existing Boids plugin uses a brute force approach to solve
k-nn, meaning that each agent looks at all other agents to
find its neighbors. We use the same algorithm in our first
CUDA version, but implement a uniform grid in a second
one. The grid implementation uses CuPP to internally work
with two data representations, being optimized for CPU and
GPU, respectively.

The paper is organized as follows. First, Section 2 gives
a brief overview of CUDA and the problems that may
arise when integrating it into C++ applications. The main
part (Section 3) describes the functionality of the CuPP
framework and explains how it solves the problems outlined
before. Our experiences with the development of the CUDA-
based OpenSteer plugins are described in Section 4. In
Section 5 we give a brief overview of our experience with
a CUDA port of the Einstein@Home application, in which
we have found similar problems as in OpenSteerDemo —
however, as the Einstein@Home client is a C application we
did not use CuPP for this work. Section 6 discusses related
work, while Section 7 summarizes the paper and gives a
brief outline on future work regarding CuPP.

2. CUDA

CUDA is a general-purpose programming system for
NVIDIA GPUs and was first publicly released in the end of
2007. By using CUDA, the GPU (called device) is exposed
to the CPU (called host) as a co-processor. It executes a
function (called kernel) in the SPMD model, which means
that a user-configured number of threads runs the same pro-
gram on different data. From the host’s point of view, kernel
invocations are asynchronous function calls. Synchronisation
is done explicitly by calling a synchronisation function, or
implicitly when the host tries to access memory on the
device. In both cases, synchronization takes the form of a
barrier that blocks the calling host thread until all previously
called kernels have been finished.

The device is designed to process tens of thousands (or
even more) threads at the same time. It uses this massive
parallelism to hide the costs of memory accesses by efficient
thread scheduling, i.e., threads are removed from a processor
while waiting for a read from memory to complete. The
memory at the device is called global memory and can be
accessed by both the host and all processors of the device.

One of the major benefits of CUDA as compared to other
GPU programming systems is its use of a C dialect, such that
an original C function for a CPU can often be transformed
into a CUDA kernel with only slight modifications. Further-
more CUDA provides to developers C libraries that expose
all device functionalities needed to integrate CUDA into a
C program. We give a brief outline of the basic functions
next, a detailed description can be found in [3].

The so-called host runtime component of the CUDA
library offers both malloc and free-like functions to

allocate and free global memory. If a kernel should access
the memory allocated with the CUDA malloc call, a pointer
to this memory must be passed to it as a parameter. Fur-
thermore the host runtime component offers a memcpy-like
function to copy data from main memory to global memory
or vice versa. As the device itself can not access main
memory, but only memory located on the graphics board,
global memory must be used to exchange data between host
and device. Therefore an average CUDA program has the
following work flow:

1) Allocate global memory (host)

2) Copy data from main memory to global memory (host)

3) Execute kernel and store the newly calculated values

in global memory (device)

4) Copy calculated results from global to main memory

(host)

5) Free global memory (host)

This approach is expected to work fine with all C pro-
grams. In C++, however, using memcpy is problematic at
best, as copies of C++ objects are designed to have their
copy constructor called at creation and the byte-wise copy
done by memcpy is not guaranteed to be fully functional.
The same holds true for objects containing pointers, since the
pointer points to main memory, which is not accessable from
the device. On the other hand, mixing C and C++ imposes
some problems independent from the CUDA realm [4],
[5]. For example, directly using a class in a C application
requires to add a structure with the same internal memory
layout as the class. It is possible to create such structures for
C++ classes not using virtual inheritance, as their memory
layout is identical to that of C structures. However this
is only possible if the developer has access to the class
definition. We propose CuPP as a solution to these problems
and offer advanced mechanisms to ease the development for
the host part of the application.

3. CuPP

CuPP is a C++ framework built up on CUDA and the
Boost libraries. It can be roughly divided into five highly
interwoven components that will be further explained below:

« device management

e memory management

o C++ kernel call

« support for classes

« data structures

Further information regarding CuPP can be found at
the CuPP website [6] and more technical details of the
implementation can be found in [7].

3.1. Device management

In CUDA a host thread can only control one device. CuPP
device management is designed to remove this limitation.

Although in the current version of CuPP this functionality
is not fully implemented, it is planned to be added in
an upcoming version and therefore is already part of the
existing API. The foundation of CuPP device management
is a device handle that must be passed to all functions
interacting with the device — e. g. allocating global memory
or executing a kernel. The constructor of the device handle
allows the client to specify which kind of device should
be used. For example, the client may request a device with
support for atomic operations. Furthermore the device handle
can be used for barrier synchronization between CPU thread
and GPU kernels.

3.2. Memory management

CuPP offers two abstraction levels for direct memory
management. The lower level is used by CuPP itself and
is similar to CUDA memory management except being
adapted to C++. For instance the function allocating memory
throws an exception if memory allocation fails and expects
as parameter the number of elements to be allocated instead
of the amount of bytes. One of the major benefits as
compared to CUDA is that CuPP provides a smart pointer
implementation that takes care of freeing global memory if
there is no further pointer referring to it.

Nevertheless, we hardly expect application programmers
to directly use this functionality in their programs, since
the higher-level functionality of memory objects is typically
more convenient. These are objects managing data in global
memory. If a memory object is created, it automatically
allocates memory at the device. The memory can be filled
with data by passing a STL conform iterator or a pointer to a
structure stored in main memory. When the memory object
is destroyed, global memory is freed; when the memory
object is copied, a new block of global memory is allocated
and data is transferred from the old memory object to the
new one. The behavior of copying memory objects may
look uncommon at first, but is useful to implement data
structures that automatically store their data on both host
and device. A copy of an object is expected to have its own
copy of the data instead of referring to the old one. When
using memory objects, the developer must just take care that
the copy constructor is called. The vector implementation
described in section 3.5 and the grid data structure described
in section 4 use memory objects.

3.3. C++ kernel call

With a CUDA kernel call, only C-conform data types can
be passed. CuPP provides a C++-like function call including
support for call-by-value and call-by-reference semantics,
in a way that only parameters passed by reference can be
changed by the kernel. The CuPP kernel call is implemented
as a functor, which is a class providing operator (). The

CuPP kernel functor uses operator () to issue the CUDA
kernel call. A kernel functor object is created by passing
a function pointer of the CUDA kernel function to the
constructor. The number of threads, which should execute
the kernel, can be passed to the kernel constructor as well,
but can also be set afterwards.

Specifying if a parameter to the kernel should be passed
by value or by reference is identical to the C++ syntax
and all parameters to be passed by reference are prefixed
with an ampersand. This is possible, since all CUDA files
are preprocessed with a C++ compiler, which transforms
references into automatically dereferenced pointers.

The call-by-value variant is almost identical to the stan-
dard C++ mechanism — parameters are passed by executing
the following four steps:

1) A copy of the parameter is generated by calling its
copy constructor (host)

2) The generated copy is byte-wise copied to the kernel
stack on the device (host)

3) The kernel is executed (device)

4) The destructor of the generated copy is called after the
kernel is called (host)

This method differs from the one of C++ only by the
time the destructor is called. The destructor is called not
after the kernel is executed, but may be called before. This
is done to prevent any unneeded synchronisation between
host and device. We are not aware of any case in which
synchronization is required, as memory transfers from and
to device memory are not done when a kernel is active and
the destructor can therefore not influence the kernel in any
way.

Call-by-reference is as well implemented in a similar way
to C++:

1) The parameter to be passed to the kernel is byte-wise
copied to global memory (host)

2) The address of the parameter in global memory is
passed to the kernel (host)

3) The kernel is executed (device)

4) The copy in global memory is byte-wise copied back
to main memory overwriting the original object (host)

Step four includes a synchronisation between device and
host as global memory is accessed. To prevent unneeded
synchronizations and to reduce the number of memory
transfers, the CuPP kernel analyzes the kernel declaration
and omits the last step for any references defined as constant
using the const keyword. This analysis is done using the
boost function traits [8] and self-written template metapro-
gramming code. The fact that a reference is declared as
constant does not necessarily mean no data will be changed
at the device — e. g. the developer may remove the constant
with a cast later — but we expect this to be the exception
and bad programming style in general.

3.4. Support for classes

The techniques described in the last section offer a more
C++-like way of calling kernels, but it is still impossible
to pass a data structures containing a pointer to a kernel.
This problem results from the fact that each parameter
passed to the kernel is byte-wise copied, so pointers are no
longer useable at the device. To solve the problem, both
the call-by-value and the call-by-reference behaviors can
be enhanced by defining the following three functions as
member functions of the object to be passed as a parameter:

e T transform (device_handle&)

e device_reference<T>

get_device_reference (device_handlesg)

e void dirty (device_reference<T>)

If it is not possible to change the class definition and
add these functions, it is also possible to specialize a CuPP
template and have non-member functions called instead. For
now, T should be considered to be the same type as the
class in which it is defined. The function transform ()
is called by the framework, when an object of this class
is passed by value to a kernel. This function may be used
to copy additional data to global memory and must return
an object, which can be byte-wise copied to the device. For
example, when considering an object containing pointers the
transform() function can be used to transfer additional
data to global memory and return an object with adjusted
pointers, so that they are valid at the device.

get_device_reference is called by the frame-
work when the object is passed by reference and has
to return an object of type device_reference <T>.
device_reference <T> is a reference to an object of
type T located on the device. When created, it automati-
cally copies the object passed to its constructor to global
memory. The device_references are needed, as the
CUDA kernel expects a pointer for all parameters passed
by reference, so the parameters must be stored in global
memory and a pointer to that memory must be passed to the
kernel. CuPP provides for a default implementation, which
creates a device_reference for the object returned by
transform(). It is expected that the default implementa-
tion is sufficient in most cases.

Objects passed to a kernel as a non-const reference
can be changed by the device. These changes have to be
transferred back to the object on the host side and the
object stored in the host memory has to be notified. This
notification is done by calling the dirty () function of the
object stored in main memory. A device_reference
to the changed object in global memory is passed to this
function, so the changed data on the device can be accessed
and can be used to update the old host data.

It is optional to implement any of these three functions.
The CuPP framework employs template metaprogramming
to detect whether a function is declared or not. If it is

not declared, a default implementation that behaves iden-
tical to the call-by-value and call-by-reference semantics
is used. We expect that the functions transform(),
get_device_reference () and dirty () must only
be implemented when pointers or type transformations — as
described next — are used.

The above described functionality allows to directly pass
structures containing pointers to a kernel, however it is
still not possible to pass an arbitrary class. We introduce a
CuPP feature called type transformations to circumvent the
problem. It is not possible to directly solve it due to CUDA
limitations itself. The CuPP type transformations allow the
client to define two independent types that get transformed
into one another when transferred from one memory domain
to the other. The type used by the host is called host type,
whereas the type used by the device is called device type.
The matching is expressed by adding two t ypede£s to both
types, which name the host- and device types, respectively.
If it is not possible to change the class definition of one
of the types, the binding between host and device can be
established by specializing a template.

The matching between the two types has to be a 1:1
relation. The transformation of the two types is not only done
if the objects are passed by value but also if the objects are
passed by reference. The transformation has to be done by
the transform(), get_device_reference () and
dirty () functions and the type denoted as T in the
function definitions must be the device type. The host type
can be any legal C++ class and the device type must be
CUDA compliant. The next section gives an example of how
the type transformations can be used.

3.5. Data structures

CuPP currently only includes a vector data structure, other
data structures will be included in an upcoming version. The
vector implementation is mostly a wrapper class of the C++
STL vector [9] and provides for an example implementation
of a feature called lazy memory copying. The host type of
the vector offers the same functionality as the C++ STL
vector. The device type suffers from the problem that it is
not possible to dynamically allocate memory in a CUDA
kernel, so the size of the vector cannot be changed at the
device. The type transformation is not only done to the
vector itself, but also to the type of the values stored in the
vector. Therefore the device type of vector<T> is identical
to vector<T: :device_type>: :device_type. This
kind of transformation makes it possible to pass e.g. two-
and multidimensional vectors (vector< vector<T> >)
to a kernel.

As vectors are often used to store a large amount of
data, transfers of vectors from or to global memory should
be minimized. CuPP vectors use lazy memory copying to
reduce the amount of copies done. The technique is based

on some special behavior of the functions transform (),
get_device_reference () and dirty ().

e transform() and get_device_reference ()
copy the vector data to global memory if the data is
out of date or no data has been copied to the device
before.

e dirty () marks the host data to be out of date.

« Any host functions or operators that read or write data
check if the host data is up to date, and if not copy the
data from the device.

o Any host functions or operators changing the state of
the vector mark the data on the device to be out of date.

Using this concept, the developer may pass a vector
directly to one or multiple kernels, without the need to
think about how memory transfers are minimized, since
the memory is only transferred if it is really needed. The
example application described in the next section uses this
technique to improve performance.

4. OpenSteerDemo

OpenSteer is a steering library written in C++ by
Reynolds in 2002. Steering refers to life-like navigation
of so-called agents. An agent is an autonomous character
used in games or other interactive media. The navigation of
an agent is defined by a steering behavior, which depends
solely on the environment of the agent. OpenSteer offers
a demo application, called OpenSteerDemo, which we use
throughout our work. OpenSteerDemo offers different types
of plugins simulating steering behaviors. To demonstrate the
benefits of using CuPP, we have integrated CUDA into the
Boids plugin, which simulates flocking of birds [2].

The architecture of OpenSteerDemo is similar to the one
of games. It runs a main loop, in which each iteration
simulates a discrete time step (update stage) and then draws
the new state to the screen (draw stage). In a parallel variant
of the application [10], which we take as our basis, the
update stage is again split into a simulation substage and
a modification substage. The simulation substage calculates
the next agent state for all agents, but does not change
the current states. The agent states are afterwards updated
in the modification substage. In both the simulation and
modification substages, the calculations for every agent can
be executed in parallel and only a barrier synchronization is
required between both substages.

Our CUDA implementation uses a thread for each simu-
lated agent and two kernel calls, one for each substage of
the update stage.

The simulation kernel takes position and direction of every
agent as input parameters and outputs a steering vector,
which represent how the agents wants to move. The modifi-
cation kernel takes the steering vectors as input and updates
position, heading and some misc. data — e. g. acceleration

during the last simulation step — for every agent. Furthermore
the modification kernel outputs matrices representing the
position where the agents should be rendered at the screen.
We are using multiple CuPP vectors to store all data named
before — for example we have a vector for position data and
one for the heading of agents. Each entry of a vector stores
the data for one agent. This design is almost identical to that
of the CPU-based OpenSteer plugin, except that the latter
uses STL vectors instead of the CuPP ones.

To be able to access all agent data uniformly at both
host and device, we only needed to replace the STL vectors
with CuPP vectors and define three device types — one for
the class storing the misc. agent data, one for the matrix,
and one for the (mathematical) vector implementation of
OpenSteer. Replacing the STL vector with the CuPP one
did not harm compatibility with the original OpenSteer
implementation and switching between the CPU and the
device implementation can be done easily. Moreover, we
still use all not performance-critical functions of the original
CPU plugin — for example, the reset of the plugin, which
sets all agents to random coordinates within the world is
still the original CPU code. From a developer viewpoint,
data stored in a CuPP vector is transparently accessable at
both the host and the device.

From an internal viewpoint, an OpenSteerDemo run has
the following data flow:

1) The agents are created by storing initial data in the
CuPP vectors.

2) Prior to the CUDA kernel call, the data stored inside
the vectors is automatically transferred to the device.
The vectors storing the results of the kernel calls must
be resized to the correct size before the kernel call, as
memory cannot be allocated inside a CUDA kernel.

3) In the CPU-based draw stage, the render positions are
transferred to main memory when the vector is first
accessed.

Steps 2 to 3 are repeatedly executed until the simulation
stops. Note that after the first two kernel calls, no data
is transferred to the device, as the data is not changed
by the host, and only the render positions are read. The
data transfer of the render positions to the host is not done
directly after the kernel call, but postponed until the data
is needed. Since kernel calls are asynchronous and we have
no implicit synchronization, everything done internally by
OpenSteerDemo between our two kernel calls and the draw
stage is done in parallel. The developer does not need
to explicitly consider this parallelism between CPU and
GPU, as it is automatically managed by CuPP and CUDA.
Furthermore if a developer would remove the draw stage and
output the result after some number of simulation steps, no
memory transfer back to main memory would be issued in-
between. The usage of CuPP vectors also allows a developer
to easily check any data for debugging or testing purposes,

as the data inside a vector can be accessed at any time. If
the debug code is removed unneeded memory transfers are
automatically removed, as well.

Moreover CuPP allows the developer to easily implement
double buffering, so even more calculations are done in
parallel at host and device. As the update stage is completely
executed at the device, we can run the n + 1-st update stage
while the result of the n-th iteration is being drawn to the
screen. This can be done by using two vectors storing the
render positions of the n-th and n + 1-st states, respectively.
The vectors are swapped in every loop iteration, so that when
state n + 1 is drawn, the data of step n are overwritten with
the data for step m» + 2. The swap must be done by the
developer and includes a manual memory synchronisation
before the kernels are executed. This synchronisation is
necessary as otherwise the access to the vector during the
draw stage would block the host thread until the previously
called CUDA kernels have finished. The host thread is
blocked since memory accesses to global memory block the
calling host thread if a kernel is active, as already described
in Section 2. The manual memory synchronisation will no
longer be needed in an upcoming CuPP version, where we
will provide a data structure with an interface explicitly
designed for double buffering.

The CUDA plugin described above uses the same brute
force algorithm to solve k-nn as the CPU implementation.
To further improve the performance of the simulation, we
changed this algorithm to utilize a grid data structure. A grid
subdivides the world into small regions called cells. We refer
to our grid implementation as a static grid. It subdivides
the world into cubic cells of same size. The number of
cells cannot be changed after a grid has been created and
is identical for each dimension, so the overall shape of the
static grid is a cube as well.

In a grid, agents are assigned to cells based on their
current position, so a cell contains all agents within its range.
The grid improves neighbor search performance, as an agent
does not need to look at all other agents to find its neighbors,
but only at those in cells within its search radius. The search
inside these cells is done with the brute force algorithm,
again.

Our static grid is created on the host and then passed to
the simulation kernel as a parameter. We choose this built
up as the device is designed for compute-intense tasks and
generating the grid mostly consists of memory accesses. The
creation of the grid is done before the simulation kernel is
executed and redone for every simulation step. We use the
CuPP type transformations to work with two different data
representations.

The host type of the static grid is an aggregation of
multiple C++ STL vectors, each representing a cell. A cell
stores the indices of all agents within the cell. All cell vectors
are stored in another vector, so the grid itself is a vector of
vectors storing agent indices. The benefit of this approach is

draw stage (82%)

| ~CuPP (1%)
type transformation (4%)

update stage (13%)

Performance overview of the static grid based Boids
simulating 4096 agents at about 102 frames per second,
which results in 204 kernel calls per second.

Figure 1. Performance overview

that adding elements to the grid is a O(1) operation. To add
an element we must calculate the index of the cell vector
and append the element.

Transferring one large memory block to global memory
is to be preferred over transferring multiple smaller blocks,
as CUDA memory transfers are DMA transfers with a
rather high initialization cost. Based on this knowledge, we
designed the device type so that it only consists of two linear
global memory blocks. One of them contains the data of all
cell vectors ordered by their index, i.e., all data from cell
vector O followed by all data from cell vector 1 and so on.
The other memory block contains the indices to locate the
beginning of different cell vectors within the first memory
block, i.e., the first value in this memory block is 0, the next
is the size of cell vector 0, the next the size of vector O plus
the size of vector 1 and so on. This device type requires
only two memory transfers for all data, whereas a direct
transfer of the host type to global memory would require
one memory transfer per cell.

By using CuPP for implementing the static grid, we could
independently choose two rather easy and straightforward
data structures, whereas devising a single structure with
support for both easy filling and fast transfers would have
been more complicated. Even though such an implementa-
tion may provide a faster overall performance, we believe
that for projects not striving for maximum performance, but
looking for good performance with reasonable programming
effort, the CuPP approach is a good compromise.

Measuring the CuPP runtime overhead compared to solely
using CUDA is hardly possible, as CuPP consists of a
high amount of rather small functions, which are inlined by
default. Nonetheless, Figure 1 provides a rough performance
overview of OpenSteerDemo when compiled without func-
tion inlining, so it is possible to measure the performance
cost of these functions with a profiler. When compiling with-
out function inlining, the performance of the update stage
is reduced by more than 7% and the overall performance
of the application is reduced by about 2%; therefore the
performance numbers should only be considered a rough
estimation. We measured the performance of our plugin us-

ing the static grid in a scenario with only 4096 agents, so the
calculations done by the GPU don’t become the performance
bottleneck. In this scenario CuPP required less than 1% of
the overall runtime and was capable of issuing more than
200 kernel calls per second. The type transformation itself
requires about 4% of the runtime, but there is no runtime
overhead compared to manually transforming the data struc-
ture before the kernel call. However, the type transformations
impose a rather high compile time overhead as determining
the corresponding types uses template metaprogramming
— compiling the original Boids plugin required about 3.1
seconds, whereas compiling the CuPP based plugin requires
7.3 seconds.

Using the original CPU data structure is not only prob-
lematic for our grid implementation, but we also have the
same problem in the implementation of another CUDA-
based application, the Einstein@Home client. We give a
brief outline of the problems with this application in the
next section.

5. Einstein@Home client

Einstein@Home is a distributed computing project search-
ing for so-called gravitational waves emitted from particular
stars (pulsars), by running a brute force search for different
waveforms at a huge dataset. The calculations done by the
Einstein@Home application can be roughly divided into two
parts. The first part is the so-called F-statistics, and the
second is a Hough transformation. We only ported the F-
statistics to CUDA.

The data structures used by the CPU-based Ein-
stein@Home client are deeply-nested and pointer-based. We
tried to directly copy these structures to the device, however
this increased the runtime of the application by about a
factor of 100. A new data structure, which arranges all data
in one linear memory block and uses a second one with
indices, similar to the one described above, reduces the time
required for memory transfers by a factor of about 5000.
Moreover, with the new data structure, it was finally possible
to reduce the overall runtime of the application to about one
third of the original CPU runtime, even though the kernel
running at the device is hardly more than a copy-and-paste
of the original CPU code. CuPP is not used in this work
as the Einstein@Home client is written in C and not C++.
Nonetheless, our experience with the Einstein@Home client
shows that the problems experienced with OpenSteerDemo
are not unique to this application and the type transformation
solution offered by CuPP would also work well in the
Einstein@Home application. A more detailed description of
our work on the Einstein @Home client can be found in [11].

6. Related work

NVIDIA provides an example of how CUDA can be
integrated into a C++ application as part of the CUDA SDK,
however it discusses none of the problems outline above
and expects the interface between CUDA and C++ to be
C compliant. The CUDA Data Parallel Primitives Library
(CUDPP) [12] designed by Harris et.al. tries to improve
programmability by providing a set of kernel implementa-
tions for data-parallel algorithms such as parallel-prefix-sum
or parallel-reduction. In contrast to CuPP, this approach frees
the developer of writing a CUDA kernel, but host code and
data transfers must still be managed by the developer.

7. Conclusion / Future work

In this paper we have introduced our novel framework
CuPP, which is designed to ease the integration of CUDA
into C++ applications. CuPP provides both predefined data
structures that transparently support access to their data at
GPU and CPU, and an interface to easily write own data
structures with the same functionality. These data structures
work with any kind of data flow and free the developer from
taking care when the memory between the host and the
device should be synchronized. Furthermore CuPP allows
direct CUDA integration into C++ applications, which is
complicated without CuPP when there is no C compatible
interface between the two parts. As we have demonstrated
in Sections 4 and 5, directly using a CPU data structure
is problematic and may sometimes completely prevent any
performance increase. The CuPP type transformations are
designed to overcome this problem, by providing the possi-
bility to easily use two independent data representations for
the same data.

We have already noted some future developments for
CuPP in both Sections 3 and 4, however there are some
more future developments not yet named. We plan to
extend the device management by adding a system that
keeps track of the devices currently being used. Moreover
CuPP would benefit from an advanced kernel queue that
automatically distributes multiple kernels across available
devices including transparent moves of data between the
devices. Implementing such a system would require dataflow
analysis to determine how data is passed to all kernels as
well as the development of non-trivial efficient scheduling
algorithms. Upcoming versions of CuPP may also support
texture memory, so data can be easily stored not only in
global but also in texture memory.

A problem when using CuPP is that it is based on a
high amount of template metaprogramming. Since template
metaprogramming is carried out during compilation, the
compile time is increased — in the case of the Boids
scenario, the compile time was more than doubled with the
introduction of CuPP. Due to restrictions of the standard

C++ language, e.g. missing reflections support, template
metaprogramming must be used to analyze the kernel defi-
nitions and we cannot avoid this problem.

Acknowledgment

We are grateful to Claudia Fohry and Michael Lesniak
for proof reading and all members of the moderated C++
newgroup (comp.lang.c++.moderated) for some enlighting
template metaprogramming snippets. We thank NVIDIA for
providing hardware for testing and developing CuPP.

References

(1]

(2]

(3]

(4]

R. Gillam, “The anatomy of the assignment operator,” pp.
305-336, 2000.

C. W. Reynolds, “Steering behaviors for autonomous
characters,” in Proc. Game Developer Conference, 1999,
pp. 763-782. [Online]. Available: http://www.red3d.com/cwr/
papers/1999/gdc99steer.html

N. Corporation, “NVIDIA CUDA compute unified device
architecture programming guide version 2.0,” NVIDIA Cor-
poration, 2008.

S. Meyers, More effective C++: 35 new ways to improve your
programs and designs. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

(3]

(6]

(71

(8]

[9]

[10]

(11]

[12]

M. P. Cline, M. Girou, and G. Lomow, C++ FAQs. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1998.

“CuPP website,” http://www.plm.eecs.uni-
kassel.de/plm/index.php?id=cupp, 2008. [Online]. Available:
http://www.plm.eecs.uni-kassel.de/plm/index.php?id=cupp

J. Breitbart, “A framework for easy CUDA integration in C++
applications,” Diplomarbeit, University of Kassel, 2008.

Adobe Systems Inc, D. Abrahams, S. Cleary,
B. Dawes, A. Gurtovoy, H. Hinnant, J. Jones,
M. Marcus, I. Maman, J. Maddock, T. Ottosen,
R. Ramey, and J. Siek, “Boost type traits library,”

http://www.boost.org/doc/html/boost_typetraits.html, 2008.
[Online]. Available: http://www.boost.org/doc/html/boost\ _
typetraits.html

B. Stroustrup, The C++ programming language, fourth edi-
tion. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2000.

B. Knafla and C. Leopold, “Parallelizing a real-time steering
simulation for computer games with OpenMP,” 2007, parCo.

J. Breitbart, “Case studies on gpu usage and data structure
design,” Master’s thesis, University of Kassel, 2008.

M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
“CUDPP: CUDA data parallel primitives library,”
http://www.gpgpu.org/developer/cudpp/, 2008. [Online].
Available: http://www.gpgpu.org/developer/cudpp/

